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Abstract
In a recent publication of Panja et al (2007 J. Phys.: Condens. Matter 19 432202) they
suggested a new interpretation of the translocation problem of polymer chain threading through
a narrow pore. Here we point out some contradictions and inconsistencies in this treatment
which question the plausibility of the obtained results.

In a recent publication Panja et al [1] presented a
new theoretical interpretation of the problem of unbiased
translocation through a narrow pore in a membrane. The
authors were mainly dealing with the scaling law for the
average translocation time τd in terms of the chain length N .
The time τd is defined as an average first-passage time of the
translocation process. They also performed MC-simulations
to test their theoretical predictions. Their considerations were
based on linear response theory with memory effects and the
fluctuation-dissipation theorem (FDT) which, as the authors
assumed, are applicable to monomers threading through the
pore. The main results were the following. The mean-square
displacement of the translocation coordinate s is subdiffusive
at times t � τR (where τR is the characteristic Rouse time) and
then it crosses over to a normal diffusive regime at t � τR.

Namely, one has

〈s2〉 ∝
{

t
1+ν
1+2ν , t < τR

DN t, t > τR

(1)

where ν is the Flory exponent and DN is a diffusion coefficient
which is discussed below. As a result of this anomalous
dynamics, the average translocation timescales as

τd ∝ N2+ν . (2)

The authors emphasize that τd is larger than τR so that the
scaling given by equation (2) differs from τR ∝ N1+2ν (we
recall here the seminal paper of Chuang et al [2] where it
was argued that despite τd > τR, the translocation time τd

should scale as τd ∝ N1+2ν , i.e. the presence of a constraint
(membrane) does not affect the τd versus N dependence).

In this comment we would like to point out some
contradictions in the theoretical treatment given in [1] which
question the validity of the employed approach and its main
conclusions.

As a first general remark one should mention that in the
treatment, presented in [1], the membrane is present only as
an imaginary separating plane between the left (cis), and right
(trans) semi-spaces. Nowhere in the text is the proper statistics
of the polymer chain, having one of its ends tethered at the
impenetrable membrane, considered. Therefore, it remains
unclear why the resulting scaling for τd differs from that for
τR ∝ N1+2ν . The memory effects, which the authors refer to,
exist also in the case of an imaginary membrane.

The authors handle the problem in terms of the linear
response theory which links the chain tension φ(t) and the
translocation velocity v(t) = ṡ(t) by means of

φ(t) =
∫ t

0
μ(t − t ′)v(t ′) dt ′ (3)
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where μ(t) is a memory kernel which, according to FDT, can
be expressed through the autocorrelation function μ(t − t ′) =
〈φ(t)φ(t ′)〉v=0. The inversion of equation (3) yields

v(t) =
∫ t

0
a(t − t ′)φ(t ′) dt ′, (4)

where again, according to FDT, a(t − t ′) = 〈v(t)v(t ′)〉φ=0, and
the relation between the respective Laplace transforms reads

μ̃(k) = ã−1(k) (5)

with k being the Laplace conjugate variable.
The calculation of μ(t) is the central point of [1]. To

this end they suggest the following Gedanken experiment.
Let us assume that a chain portion nt (tethered with one
end at the membrane) is equilibrated at the left-hand side
(lhs) of the membrane. Then suddenly p monomers are
injected from the lhs to the right-hand side (rhs) of the
membrane which corresponds to an impulse current v(t) =
pδ(t). According to equation (3), the memory kernel will
reflect the tension relaxation φ(t). Assuming that p �
nt and that the characteristic relaxation time goes as t ∝
n1+2ν

t , one can then prove that the memory kernel μ(t) ∝
t− 1+ν

1+2ν . Using the Laplace transform of the velocity correlation
function equation (5), and the expression for the mean-square
displacement, 〈s2(t)〉 = 2

∫ t
0 (t − t ′)〈v(t)v(t ′)〉 dt ′, one obtains

the result given in equation (1). The authors claim that at t >

τR the process follows the law of normal diffusion so that the
matching of the subdiffusive and diffusive regimes at t = τR

leads to DN τR = τ
1+ν

1+2ν

R , or DN ∝ τ
− ν

1+2ν

R . Taking into account
that τR ∝ N1+2ν , one obtains DN ∝ N−ν . After a period equal
to the translocation time τd one has 〈s2(τd)〉 = N2, i.e. (see
equation (1)) DN τd = N2, or τd ∝ N2+ν , as suggested by
equation (2).

It is strange that this result implies DN ∝ N−ν (as in the
case of Zimm dynamics with hydrodynamic interactions which
are absent in this model!). It turns that the chain diffusion
coefficient is much larger than that for a Rouse unconstrained
chain, DR ∝ N−1, although on the other hand, one claims that
τd � τR. Therefore, one might wonder whether a crossover
to normal diffusion at time t ≈ τR really exists. Note, that
such a crossover (manifested by a knick-point in 〈s2(t)〉) has
actually never been seen in the numerous previous computer
experiments on translocation dynamics. It is not detected even
in figure 3 of the paper of Panja et al [1]. In contrast, at
sufficiently late times 〈s2(t)〉 is observed to go to a plateau, as it
should, because the largest possible value of the translocation
coordinate s is always strictly limited by the chain length N ,
i.e. 0 � s � N , despite the broad distribution of translocation
times.

The linear response theory has also been utilized in the
case of field-driven translocation in another paper by the
authors [3] where the chain is subjected to a driving force E ,
acting inside the pore. Under this condition the chain tension
imbalance between the left and the right sides of the pore varies
almost linearly in E (see figure 4 in [3]), i.e. φt=0 − φ(t) ∝ E .
From equation (7) in [3] one obtains for the velocity v(t) ∝

Et− ν
1+2ν and for the translocation coordinate s(t) ∝ Et

1+ν
1+2ν .

The condition s(τd) = N then yields

τd ∝
(

N

E

) 1+ν
1+2ν

. (6)

A comparison with equation (8) in [3] (which reads τd ∝
N

1+ν
1+2ν /E and where the E-dependence was only numerically

obtained) shows that the linear response method fails to
predict the correct E-dependence of the translocation time.
The authors faced similar problems in their study of the
translocation dynamics by pulling a chain through a pore with
a force F applied to one end of the polymer [4]. In this case it
is well known [5] that at N−ν � a F/kBT � 1 (where a is the
Kuhn segment length and T is the temperature) the chain reacts
nonlinearly to applied force (the so-called Pincus scaling law).
Thus one may wonder to what degree is the linear response
theory an adequate tool for handling the problem. Moreover,
the scaling expression τd ∝ N

1+ν
1+2ν /E is inconsistent with the

natural scaling form τd = N2+ν f (E N) where E N is the work
performed by the field E during the time τd .

Finally, we should comment on the criticism [1] of our
recent publication [6], in which we studied the dynamics of
unbiased translocation. We recall that our consideration is
based on the notion of a fold, an equilibrated portion of the
chain which threads through the pore whereas the total chain
is far from equilibrium. The fold experiences an entropic
barrier while it is threading randomly between the cis- and
trans-sides of the membrane. We have shown that overcoming
of the entropic barrier leads to anomalous diffusion in the
translocation length space, namely 〈s2(t)〉 ∝ tα where α =
2/(2ν + 2 − γ1) and γ1 is the surface exponent (γ1 = 0.68 in
three-dimensional space). We have assumed that the proper
fractional diffusion equation (FDE) with the corresponding
anomalous diffusion exponent α = 2/(2ν + 2 − γ1) could be
used for the complete description of the translocation process
in terms of probability distribution function P(s, t). The FDE-
formalism is very convenient because it enables one to analyze
the first-passage time distribution function Q(t) (which is
related to P(s, t)) as well as to impose some particular
(e.g. reflecting at s = 0 and adsorbing at s = N) boundary
conditions. As demonstrated in [6], the results from our
dynamic Monte Carlo study perfectly agree with the theoretical
predictions.

It appears to us that the criticism in [1], concerning
the entropic barrier contribution, is totally based on a
misunderstanding. Indeed, it is claimed [1] that repeated
occurrence of the state s = 0 with the eventual reaching of
the state s = N gives rise to an entropic barrier peaked at
s = N/2. It should be emphasized that the return to the
state s = 0 many times before eventually the state s = N is
reached has nothing to do with a barrier! As explained above,
the entropic barrier is assigned to a fold which is much shorter
than the chain length. This notion implies local equilibration
on the scale of the fold and makes it possible to use (locally)
an expression for the free energy. Moreover, the particular
choice of boundary conditions at s = 0 and N (reflecting
or adsorbing) plays a minor role in the calculation of the
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first-passage time distribution function Q(t) as well as of the
first 〈s(t)〉 and the second 〈s2(t)〉 moments of the probability
distribution function P(s, t). Therefore, the criticism raised
in [1] is in our opinion not well founded.
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